Token Migration Playbook

Step-by-step guide for migrating to semantic tokens
By Petri Lahdelma - 2026 Edition

Why Migrate to Semantic Tokens?

- Enable dark mode and theming without touching component code
- Reduce inconsistency from raw color/spacing values

- Make design intent explicit in code

- Simplify brand changes and white-labeling

Migration Steps

Step 1: Audit Current Token Usage

- Run static analysis to find all color/spacing values
- grep for hex codes: #[0-9a-fA-F]{3,6}

- grep for rgb/rgba: rgb\(jrgba\(

- grep for px values: [0-9]+px

- Export to spreadsheet with file:line references

Step 2: Create Token Mapping

- Map each raw value to a semantic token

- #3b82f6 -> color.prinary. default

- #ef4444 -> col or. danger. defaul t

- 16px -> spacing.4 or spacing. conponent. gap
- Document edge cases and exceptions

Step 3: Set Up Enforcement

- Add ESLint rule to block core token imports
- Configure Stylelint to flag raw values

- Add pre-commit hooks for token validation
- Create ClI check for token compliance

Step 4: Run Migration Codemods

- Write jscodeshift transforms for JS/TS
- Write postcss transforms for CSS

- Run in dry-run mode first

- Review diffs before committing

- Migrate one surface/feature at a time

Step 5: Visual Regression Testing

- Capture before/after screenshots

- Run Chromatic or Percy visual diffs
- Manual QA on high-traffic surfaces
- Sign off from design before merge

ESLint Rule Example

/1 .eslintrc.js
nmodul e. exports = {
rules: {
'no-restricted-inports': ['"error', {
patterns: [{
group: ['**/tokens/core/*'],
message: 'Use senantic tokens.'
3
}H
}
b

